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ABSTRACT 
The well-known rules of Emergy Algebra, originally formulated in steady state conditions, are 

reconsidered and analyzed from a dynamic point of view. In such a sense the paper points out their 

corresponding differential bases. The latter, in turn, represent the preferential guide to recognize their 

most profound physical meaning.  

However, for the sake of completeness, a possible generalization of the same rules from steady state to 

variable conditions is also considered. 

The analysis is particularly focused on the three fundamental generative processes represented by co-

production, inter-action, and feed-back, which are formally described (under dynamic conditions) by 

means of the Incipient Fractional Differential Calculus. In so doing, the mathematical method adopted 

succeeds in defining the output exceeding Quality of the mentioned processes by means of the 

corresponding Ordinality of their associated output Transformities. 

Such a dynamic analysis enables us to show that the rules of Emergy Algebra proposed by Prof. Odum 

under steady state conditions have a well-founded dynamic physical nature, adequately described by 

the differential operators adopted. The analysis also shows that the originally conceived rules of 

Emergy Algebra continue to hold even when the dynamics of a process becomes extremely 

complicated. 

 

INTRODUCTION  
The basic rules of Emergy Algebra can be summarized as follows: 

1.  “All Source Emergy to a Process is assigned to the Process’s output” 

2.  “By-products from a Process have the total Emergy assigned to each pathway” 

3. “When a pathway splits, the Emergy is assigned to each “leg” of the split based on their percent of 

the total Exergy flow on the pathway”1 

4.  “Emergy cannot be counted twice within a system. In particular:  

a)  by-products, when reunited cannot be summed;   

b) Emergy in feedbacks should not be double counted” (Brown 1993; Brown & Herendeen 1996). 

For the sake of completeness, it is worth adding a fifth rule concerning a more sophisticated process 

termed as Interaction:  

5. “Output Emergy of an interaction Process is proportional to the product of the Emergy inputs” 

(Odum, 1994a).  

A rapid glance at the above-mentioned rules allows us to immediately point out that: 

                                                 
1 The third rule directly refers to Exergy in accordance with the general definition of Emergy 

(Giannantoni 2000a, 2001c) 



- The first rule represents a sort of  “closure” rule in the case of one sole output; 

- The second rule is extremely important because it shows how co-generative processes represent the 

basic processes mostly responsible for the increase in Emergy in self-organizing systems;  

- The third rule points out the basic distinction between a co-production process and a simple split 

process (a mere subdivision of a flow into two equivalent sub-flows); 

- Rule 4a) prevents erroneous accounting which would lead to an “artificial” amplification of Emergy, 

not related to a generative process (such as, for instance, a co-production).Thus it prevents double-

counting of an identical contribution, already accounted for in its primary generative phase; 

- Rule 4b) can be simply seen as a particular case explicitly pointed out for the sake of clarity. 

The fifth rule pertains to inter-action. It completes the list of basic processes capable of generating an 

exceeding Emergy and also enables us to consider the feedback process as a particular form of self-

interaction. In such a perspective the basic generative processes are: co-production, inter-action and 

feed-back. 

It is also known that such rules are assumed as being valid under steady state conditions and are also 

used, without any modification or basic justification under stationary or slow transient conditions.  

One fundamental problem is thus represented by the extension of their validity to variable conditions. 

In this case it is of primary importance to recognize whether they are well-founded in differential terms 

(which is equivalent to research for their basic dynamic foundations). This aspect shows all its 

relevance if we take into account that the rules of Emergy Algebra represent an essential part of the 

definition of Emergy. In fact Emergy is rigorously defined on the basis of two distinct elements: a 

correct dynamic Balance Equation (i.e. accounting rules) and an additional assumption concerning its 

reference level (i.e., solar Emergy with an associated conventional value of Transformity, for instance 

1 seJ/J) (Giannantoni, 2000a). 

We will thus analyze, in a rapid sequence, the three most important generative processes (co-

production, inter-action, feed-back) and their associated dynamic foundation expressed in differential 

terms. For the sake of completeness, we will also mention split processes. 

 

SHORT REMINDERS ABOUT MATHEMATICAL METHODS ADOPTED 
The Rules of Emergy Algebra enabled Odum not only to show, but also to account for, an extra-

ordinary aspect pertaining to living systems: their intrinsic capacity of generating ever new forms of 

processes, characterized by an ever-increasing level of Quality. This new concept of quality (thus 

indicated by a capital Q) is not understood as a simple property or a characteristic of a particular 

phenomenon or process, but it is recognized as being any emerging property that is not reducible to its 

phenomenological premises or to our traditional mental categories. This recent concept of science is 

inducing a profound revision in Classical Thermodynamics and in several related disciplines. It 

suggests that we modify our language to adequately describe the dynamics of Quality. In particular, 

this includes the formal language represented by mathematics, which is recognized as the most 

appropriate linguistic form adopted by science. 

To this purpose a new form of derivative, the incipient derivative, represented by 


dtd/  has been 

introduced (Giannantoni, 2001d, 2002a) to better describe the dynamics of living systems. This 

derivative also allows processes to be modeled as intrinsically linear and always yields explicit 

solutions.  

In order to include the initial conditions in the differential equation modeling the process a new 

generator 


D  was introduced        
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  represents the Dirac Delta function.  

In such a way a differential equation of order n , with variable coefficients, takes the form 
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Equation (2.2) can be simply written as 
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where the coefficients kc  are related to the initial conditions  
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The obtained structure (2.4) is extremely important because, when re-written in the form 
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it gives the explicit solution to Eq. (2.2), with the initial conditions (2.5). In this respect it is worth 

noting that the various functions of 


D , such as, for instance, ),(


DtPn , play the analogous role that is 

played by Laplace Transform, while the generator 


D  plays the same role as the complex variable s . 

However the fundamental differences between the two methods are: i) the method based on the 

generator 


D  always operates in the domain of the time variable t , and thus it always maintains an 

evident physical meaning, whereas the functions of complex variable s  rarely have an explicitly 

interpretable physical meaning; ii) the method based on the generator 


D  is always applicable to both 

linear and “non-linear” differential equations (because the latter are always intrinsically linear when 

interpreted in terms of 


D ), whereas the method based on Laplace Transform yields negligible, or even 

no advantages in the case of traditional non-linear differential equations. 

The three fundamental rules of Emergy Algebra co-production, inter-action and feed-back will be 

analyzed in three successive sections by means of the above-mentioned Incipient Differential Calculus 

in order to give differential bases to Emergy Algebra. At the same time, it will show the intimate 

structural nature of the corresponding Emergy Source Terms. The latter are always present, with their 

specific contribution, in the mathematical formulation of the Maximum Em-Power Principle 

(Giannantoni 2001c,d, 2002a). 

 

CO-PRODUCTION  
The co-production process has already been analyzed in (Giannantoni, 2001d). However it will 

represented here in more detail.  

The process can be schematized as in Fig. 3.1, where  u  represents the Emergy Source Term. The 

pertinent Emergy Balance in steady state conditions (but often adopted also in stationary or slow 

transient conditions), can be thus written as follows  
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It is easy to recognize that condition (3.2), corresponding to the second Rule of Emergy Algebra, is 

assumed as being valid only on the basis of the relational structure of the outputs of the co-production 

process, that is without considering its internal productive structure, which, in any case, does not 

appear explicitly in Eq. (3.1), apart from the explicit assumption of the uniqueness of the same process. 

In other words the latter is analyzed in terms of its mere phenomenological characteristics, as if it were 

a black box. 

We want now to show the basic reason for condition (3.2), not only in steady state conditions but also 

in variable conditions. In this latter case we have to take the Emergy Accumulation Term into account, 

so that Eq. (3.1) becomes (see Giannantoni, 2001d) 
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where the “dot” notation for the derivative is understood as an incipient derivative like in the term 

tAD



 / , which represents the “local” variation (in the Eulerian sense) of the Accumulated Emergy 

( DA ) on behalf of the considered system (geometrically defined by the domain D ). 

In order to reach a more adequate description of the internal productive structure, let us now compare 

Eq. (3.4) with a fractional differential equation, always in terms of incipient derivatives, written in a 

unique variable Em  (already thought of as a flow, for simplicity of notation), whose homogeneous 

part is “similar” to Eq. (3.4), that is  
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where the symbol tdd


/ , in the most general case, represents the incipient Lagrangian derivative, that 

is 
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in which v  is the velocity of the mass flow and 


  is the incipient nabla “generator” (understood as a 

prior operator).  

It is then easy to show that, if we assume the output Emergy Flow to be proportional to the 

accumulated Emergy (as is usual in physical and biological systems) 

         DAkEm                   (3.7) 

it follows that, for C k               A  1        and   1B                             (3.8), 

Eq. (3.5) represents the most general dynamic model of the considered process. In order to find its 

general solution, let us then reduce Eq. (3.5) to its standard form (as a linear differential equation of the 

first order with constant coefficients) 
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where   CAK /1    CBK /2    CK /13             (3.10). 

In fact, in adherence to the assumptions according to which Eq. (3.4) was formulated, we will limit our 

considerations to case of a simple Eulerian description. This is equivalent to assume that 0v  or, 

alternatively, to deal with the problem in terms of the sole local time derivatives ( t


 / ) (that is in 

the absence of any spatial gradient). Such a partial time derivative, however, for the sake of simplicity 

will be always represented as usual ( tdd


/ ), without any possibility of confusion. 

If we now search for solutions to the associated homogeneous equation through functions of the form 

te
2

 and we take into account that the fractional derivative of order ½ of the exponential function 

gives two distinct values such as (see Giannantoni 2001d) 
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we obtain a solution in the form of a “binary” function, that is structured as follows 
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The exponents i,1 and i,2  are the solutions to the two following characteristic equations  
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Eq. (3.13) refers to the choice of the positive sign whereas Eq. (3.14) refers to the choice of the 

negative  sign. 

If we now let 
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and it is easy to recognize that the system is stable when 022  , that is when 
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Let us now start from the consideration of the solution in steady state conditions attained as the 

solution at permanent regime. 

 



BY-PRODUCTS EMERGY IN STEADY STATE CONDITIONS  
Let us assume a constant input 
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Under such asymptotically stable conditions the general dynamic solution is given by  
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where )(tEm p  is a particular integral of non-homogeneous Eq. (3.9) given by  
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Since the system is asymptotically stable, after its pertinent transient, it achieves its permanent regime 

conditions described by the solution  
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which shows the validity of Odum’s Rule (as originally formulated) in steady state conditions, when 

understood as being reached after a dynamic transient.  

For the sake of completeness, we will also analyze the validity of the Rule both under stationary and 

variable conditions.  

 

BY-PRODUCTS EMERGY IN STATIONARY CONDITIONS 
For the sake of simplicity we may continue to suppose a constant input. Let us now assume that 
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(see condition (3.21)). Consequently the system stabilizes in a stationary regime which depends on the 

assumed initial conditions. Eq. (3.9), although of the first order, has two initial conditions concerning 

both the function and its derivative of order ½ respectively, that is 
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Eq. (3.29) presents opposite values only because this is one of the possibilities offered by the definition 

of fractional derivative of order ½. Eq. (3.28), on the other hand, does not give any information about 

the two (theoretically distinct) values. 

In this respect the interpretation of the physical meaning of a fractional derivative of order ½ plays a 

fundamental role. In fact, on the basis of its specific definition, the fractional derivative of order ½ 

requires that (Giannantoni, 2001b) 
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2 The symbol “o” indicates the “circle product” (Giannantoni, 2002a, p. 178) which represents a 

generalization of the concept of  “product” already known in Mathematical Analysis. 



This shows that the initial condition pertaining to the derivative of order ½ corresponds to an 

equivalent condition for the derivative of order 0 and order 1, respectively, those derivatives whose 

integer orders define the minimum interval that includes the fractional order ½. 

Condition (3.30), when explicitly expressed by means of Eq. (3.24), leads to the conditions 

2211 cc    and  2112 cc              (3.31) 

which, on the basis of Eq. (3.24), imply that the two values defining the initial condition (3.28) must be 

equal, that is: 
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Such a condition exactly corresponds to the Rule concerning by-products, when these are considered at 

the initial time 0t . However the basic difference is that now the rule is obtained from the same 

concept of  a “binary” system or a co-productive binary process.  

On the basis of the initial conditions (3.32) and (3.29), the general solution to Eq. (3.9) is then given by 
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which represents a binary function, the two components of which are always equal to each other. Each 

component is a function made up of two distinct sinusoidal modes, which oscillate with a difference of 

phase of 2/  (according to the sign of the difference )( 00 uEmEm  ) and, as a global result, 

they give rise to identical functions with the same time mean value )( 0uEm . 

However we could alternatively choose the initial conditions in a different way, for instance as follows 
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that is with the derivative of order ½ having equal components. In fact Eq. (3.30) is a sort of 

“quadratic” form. For the same reason it continues to require equal initial values in Eq. (3.34). 

The corresponding solution is now given by  
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which still represents a binary function. Each component is made up of two distinct sinusoidal modes: 

the former are identical for both functions, whereas the latter are always in opposition of phase to each 

other. In addition, the first mode of each component oscillates with a difference of phase of  2/  

with respect to the second one (according to the sign of the difference )( 00 uEmEm  ) and, as a 

global result, they give rise to two oscillating functions with the same time mean value )( 0uEm . 

In the most general case, in which the conditions on the derivative of order ½ are completely different 

from each other, we can always reduce it to a combination to the two previous ones by recognizing that 

it is always possible to decompose such a condition as follows 
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where 
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We can thus conclude that, in stationary (stable) conditions, the two components of output Emergy are 

always equal to each other, either instantaneously or as a time mean value over a period. Their values 

instantaneously differ from input Emergy because of the internal dynamics of the process (in particular 

because of the accumulation term).3 

 

BY-PRODUCTS” EMERGY IN VARIABLE CONDITIONS  
The case of variable conditions can be better dealt with in terms of prior operators such as the 

generator 


D . In fact the explicit solution to Eq. (3.9) can be formally written as (Giannantoni 2001d, 

2002a) 
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with the initial conditions already included into Eq. (3.40). The corresponding explicit solution can be 

then expressed as follows 
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where ),( tk


 is the “incipient” solving kernel of Eq. (3.9), which has always an explicit form based 

on the particular integrals on the second side of Eq. (3.12). 

The first term on the second side of Eq. (3.42) represents the transient response in the state (sometimes 

termed as “free evolution in the state”) whereas the second term represents the so-called response at 

permanent regime. 

If the system is decisively stable (Eq. (3.21) different from zero), output Emergy, after its pertinent 

transient, reduces to 
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             (3.43), 

                                                 
3 However a deeper analysis of the process would easily show that such a discrepancy from what the 

second rule states only depends on our erroneous assumption of the model pertaining to the “tank of 

information” (or accumulation term). In fact it has been modeled as if it were a mechanical reservoir. 

In living systems, on the contrary, the tanks of information are of a different nature. They must be thus 

modeled (at least) as “binary” accumulation terms. This means that the term tdtEmd


/)(  has to be 

replaced by ( )())/( 22/1 tEmtdd


. In such a case the second rule continues to be valid, at any time. 



which represents either an oscillating (stable) trend around a mean value defined by the instantaneous 

input ))(( tuEm  or an asymptotic trend, which tends to a value defined by the same instantaneous 

input ))(( tuEm . In addition, the presence of the prior generator 
2/1)(



D in Eq. (3.41) defines the 

multiplicity of the output Emergy which, in the asymptotic trend, assumes a structure which 

corresponds to Odum’s co-production Rule. 

 

BY-PRODUCTS EMERGY OF MORE COMPLEX CO-PRODUCTION 

PROCESSES 
More complex co-productive systems are represented by generative functions such as  
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The right-hand side of Eq. (3.41) is replaced by a polynomial of order m  in the prior generator 
2

1


D . 

In such a case output Emergy is still a binary function (generated by the basic incipient derivative of 

order ½), but at the same time it is characterized by m  distinct different modes. 

The analysis of such Systems does not present particular difficulties if it is dealt with in terms of the 

generator 


D , because (as we already know) the Incipient Fractional Calculus always allows us to 

express the solution in the formal way similar to Eq. (3.40), that is   
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and in explicit terms as follows 

             

















   duEmtkdDEmtktmE m

n

k

knk

m ))((),(),()(
0

1

0

2

1

2

0

0

1

     (3.46). 

The analysis can also be further generalized to a process which co-produces n  distinct by-products. 

For these more complex systems we can repeat the same considerations made in the case of simple co-

productive systems. In fact their behavior is fundamentally due to the physical meaning of all the 

fractional derivatives, for which conditions analogous to Eq. (3.30) hold. We can consequently 

conclude that: 

i)   Odum’s co-production Rule is always valid under steady state conditions, when these are 

understood as a permanent regime reached after a transient with constant input; 

ii) it is also valid, as a mean value, in the case of stationary conditions characterized by an oscillating 

trend around a constant value (still in the case of constant input) 

iii) it is even valid under variable conditions, when the outputs are understood in terms of mean 

values (in the case of oscillating solutions) or as an amplification of n  times as much the input 

Emergy, in the case of a decisively stable response to a variable input (when the associated 

transient is finished). 

In all cases Odum’s Maximum Em-Power Principle, which asserts the general tendency toward the 

Maximum of processed Emergy (see Giannantoni 2001c, 2002a), is always satisfied. This due to an 

increase of Ordinality of output Emergy (with respect to the input one) due to the generative capacity 

of the process, which gives rise to a multiple binary function. The crucial role of Ordinality will be 

presented , in detail, in the next paragraph. 

 



OUTPUT CO-PRODUCTION TRANSFORMITY AND INCREASED 

ORDINALITY OF OUTPUT EMERGY  
For the sake of simplicity let us consider the case of two co-products modeled by Eq. (3.33). In this 

case, the perfect identity of the terms which define the three added binary functions enables us to easily 

separate the Ordinality of the binary structure from its conjugated cardinality. We may thus start by 

writing 
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Such an equation immediately shows that, at the initial time ( 0t ), we have 
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where  )( 0uxE


 represents the total Exergy spent to generate the input, whereas the term 
0,uTr  

accounts for the associated previous generative processes.  

Analogously we may thus re-write Eq. (3.47) as follows 
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where 
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whereas ))(( tyEx  is the total instantaneous output Exergy and )(tTr ex  is the factor accounting for 

all the dissipations due to the genesis of the corresponding form of output Exergy. 

In this way it becomes particularly clear that the subdivision of Transformity in two factors (initially 

introduced in Giannantoni 2001c,d) 

         exTrTrTr                                     (3.51)  

enables us to distinguish between the dimensionless scalar contribution due to losses of Exergy 

)( exTr  from the dimensional one accounting for the “emerging” of higher forms of Ordinality ( Tr ). 

The same procedure (here extremely simplified by the fact that the two by-products always have the 

same Emergy) can also be applied to the other considered cases by adopting a new type of Algebra, 

termed as “Algebra by Ordinal-cardinality”, which defines the rules and procedures according to 

which it is possible to handle mathematical entities characterized by both Ordinality and its conjugated 

cardinality. 



Such a generalized form of Algebra is also able to show that, even if the Exergy of the system tends to 

be dissipated, Emergy on the contrary, in generative processes, tends to increase. Such an increase is 

explicitly accounted for by Transformity. In fact the latter passes from a simple algebraic value to a 

binary function, which consequently shows the corresponding increase in Ordinality of the system. 

This, on the other hand, is nothing but what we anticipated in (Giannantoni 2002a, p. 97) when the 

Maximum Em-Power Principle was interpreted as a tendency Principle toward the Maximum of  

Ordinality. 

 

SPLITS AS “DUAL” FUNCTIONS 
“Splits” have already been dealt with in (Giannantoni, 2001b,d). They are thus simply recalled only to 

point out some aspects which stress, even more, the deep difference with respect to a co-production 

process. In fact, as already shown (ib.), any attempt at modeling a co-production process in terms of 

two distinct integer-order differential equations is destined to fail. Even if we adopt incipient 

derivatives in writing the pertinent vector equation 
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and even if we require that the associated initial conditions  
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satisfy Eq. (3.30) (the first member of which is defined on the basis of the initial binary function) the 

general solution to Eq. (4.1) can never ever coincide with the solution to Eq. (3.9). The reason is that a 

fractional differential problem is never reducible to an integer-order differential problem (although 

thought of in terms of incipient derivatives) without losing its specific intrinsic characteristics. This is 

because the definition of a binary function depends only on the specific type of the unique differential 

equation to which it is solution. More precisely, it only depends on the fractional derivative of order 

1/2. Certainly it might “degenerate” into a “dual” function, that is a function made up of two 

independent “monadic”2 functions (extrinsically related, as in the case of a vector). However this 

happens only if we decide beforehand to analyze the trend of such (supposedly independent) solutions 

exclusively in terms of integer-order derivatives (that is on the basis of a particular perspective, 

preliminarily chosen, which implicitly excludes other possibilities).  

Consequently, the behavior described by one fractional incipient differential equation uniquely 

characterizes (and consequently defines) a generative co-production process, whereas a vector 

differential equation (although in terms of incipient derivatives) is only able to describe a split process 

(because its solutions are only extrinsically related, and thus termed as “dual” functions). This 

immediately implies that the two distinct processes co-production and split can never be confused, 

because their specific definition is now based on the intimate generative structure of each process, 

which is uniquely described in differential terms: co-production is represented by fractional basic 

incipient derivatives and a split by integer basic incipient derivatives. 

 

INTER-ACTION 
Interaction constitutes another fundamental generative process. It is generally symbolized as in Fig. 

5.1, which evidently represents the simplest form of interaction, even if its elementary structure can 

also be the basis for more complex interactions. Its output structure is generally associated with non-

linear input or process dynamics (or both). An example of input-output non-linear dynamics can be 

given by Riccati’s Equation which, written in terms of incipient derivatives,  

                                                 
2 That is each one can be thought of as a solution of an independent integer-order differential equation. 
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              (5.1) 

can be diagrammatically represented as in Fig. 5.2, where 
1),(),( 



 DtDtG   is the transference 

function of the intrinsically linear process.  

Riccati’s Equation furnishes a solution in form of a “duet” (thus represented as    ],[ tftf


) because 

it is understood as the result of a “circle product” (or product by Ordinal-cardinality) between two 

traditional functions, each one of Ordinality (1), which gives rise to a completely new “function”, of 

Ordinality (2). In fact, by definition of circle product (indicated by “  ” and defined in (Giannantoni 

2002a, p. 178)), we have   

                          )2(,2)1(,1)1(,1
],[ tftftftftftftf



                  (5.2) 

where the “exponents” in round brackets indicate the degree of Ordinality of the corresponding 

“functions”. 

Riccati’s Equation is here explicitly recalled because Odum (1994a, p. 147) used it as an example of 

the simplest self-organizing system because it is based on the simplest self-interaction generative 

process. Now, by taking into account that its formulation in terms of incipient derivatives implicitly 

transforms this non-linear equation into an intrinsically linear one (although in terms of “duet” 

functions), we can always separate such a “duet” non-linearity from the remaining linear dynamics 

(see Fig. 5.2). Such a result can also be generalized to any interaction represented by the scheme in 

Fig. 5.1. Consequently any interaction can always be considered as made up of a “duet” non-linearity 

input, followed by a linear dynamic process (in terms of output quantity) characterized by a differential 

equation of order n, as represented in Fig. 5.3, where 
1),(),( 



 DtDtG n  is the transfer function 

of the linear process modeled in terms the generator


D . 

As is well-known, output Emergy is then the result of two contributions: the first one pertaining to the 

transient regime, the second one describing the permanent regime  
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If the process is stable, the first term on the second side of Eq. (5.3) progressively tends to zero, so 

that, at permanent regime, we are left with 
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where the last term expresses the explicit result by means of the solving kernel ),( tk


. 

If we now assume that the system is stable as a consequence of a transfer function characterized by all 

real roots, Eq. (5.4) tends to the structure 

)]([)]([)]([ 21int tumEtumEktymE
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                 (5.5) 



where intk  is a dimensional factor corresponding to the integration of the solving kernel when  

t . The result obtained (Eq. (5.5)) evidently coincides with the initial assumption made by Odum 

about the interaction process (see Fig. 5.1). 

If, on the contrary, the system, although stable, has a transfer function characterized by couples of 

complex roots, the coefficient intk  becomes a periodic function of time. This simplified analysis of the 

interaction (which can be easily generalized to the various cases previously considered with reference 

to a co-production process) is already sufficient to show the increase in Ordinality of the output 

Emergy. 

 

INTER-ACTION OUTPUT TRANSFORMITY AND INCREASED 

ORDINALITY OF OUTPUT EMERGY  
If, in analogy to the case of a co-production process, we do not consider the Ordinality of Exergy (as 

usual happens for physical quantities) but only the Ordinality pertaining to Transformity, we have  
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If we then consider the pertinent Ordinality of the two Transformities, the circular product in Eq. (5.6), 

evaluated according to Eq. (5.2), gives 
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which shows that the Interaction Process has an Ordinality of order (2), that is higher than the initial 

ones (supposed to be equal to (1)). Interaction is thus a process which generates an increase in the 

pertinent Ordinality of its output Emergy. 

In other words, under dynamic conditions, the interaction not only presents a quantitative gain greater 

than 1 (due to the contribution of internal source terms), but also an increase in the pertinent Ordinality 

of the output, which represents an excess Quality, not strictly reducible to its mere phenomenological 

premises.  

We can thus conclude that the fifth Rule stated by Odum (who did not introduce explicit Ordinality 

notations) correctly accounts for both the quantitative gain of the process and the corresponding gain 

in Quality, although the latter is expressed through a quantitative increase in the pertinent (scalar) 

Transformity. 

 

FEED-BACK 
Let us now consider another generative process, though of a different nature: a self-organizing system 

characterized by an internal feedback chain as represented in Fig. 6.1. 

As is well-know, the transfer function of the whole system, written in terms of the generator 


D , is 

given by 
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where        
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represents the transfer function of a differential process (supposed of order n), whereas 


),( DtH  is the 

transfer function of the feedback. The latter can be generally thought of as given by the following 

structure           
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a ratio of two polynomials in 


D  of order q and r respectively, where rq  . The numerator 
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),( DtQq  can be reduced to a constant which can be chosen to be 1 (without any lack of generality) 

so that Eq. (6.3) becomes  
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If now introduce Eqs. (6.2) and (6.4) into Eq. (6.1), we get 
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which allows us to illustrates the principal effects of the feedback. These can be synthesized as 

follows: 

i) a negligible influence in module on the controlled process, because 

          1)( 


DH   (6.6)  and, consequently,          


 )()( DGDW              (6.7) 

ii) an extreme relevance in terms of both stability and Ordinality of the output Emergy.  

The stabilization effect is due to the “translation” of the n zeros of the function ),(


Dtn  which 

characterizes the dynamics of the process. The polynomial in 


D  at the denominator of Eq. (6.5), as a 

consequence of the term 


),( DtRr  due to the feedback, has now n + r complex roots with their real 

part less than zero, which yields stability.  

The effect on output Ordinality is analyzed in more detail in the next paragraph. 

 

FEED-BACK OUTPUT TRANSFORMITY AND INCREASED ORDINALITY 

OF OUTPUT EMERGY  

In the simple case of a constant input )( 0uEm , the response at permanent regime, under the 

hypothesis of asymptotically stable conditions, is given by 
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where              10 W                 (6.9). 



Eq. (6.8) shows an increase in Ordinality of output Emergy due to both the incipient integration of 

order n + r (compositive Ordinality) and the incipient differentiation of order r (multiple “duet” 

Ordinality). 

Such a higher level of Ordinality is faithfully taken into account by the generative Transformity. In 

fact, under the same conditions, Eq. (6.8) can be written as follows 
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and  consequently 
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which shows that: 

- output Transformity is much richer than the Input one in terms of Ordinality  

- it accounts for  n + r  basic harmonics, which are not only harmoniously composed among them (by 

integration), but are also consonant with all their r pertinent genetic harmonics (generated by the  r  

different orders of derivation). 

Similar results can be easily achieved when the analysis is generalized to stationary and variable 

conditions (in analogy to the cases already analyzed with reference to a co-production process). 

 

CONCLUSIONS 
The previous analysis allows us to draw the following main conclusions: 

i) Emergy Algebra has solid Differential Bases, not only in steady state conditions (as originally 

conceived) but in stationary and variable conditions too; 

ii) Odum’s Rules are substantially correct even if Transformity, for practical reasons, is considered 

as being a simple scalar; 

iii) Generative Processes (such as co-production, inter-action and feed-back) present an excess 

Quality in their output Emergy, which is “reflected” by the pertinent levels of Ordinality of their 

output Transformities; 

iv) This also confirms the advantages of the subdivision of Transformity into two distinct factors 

    Tr  Tr  exTr                 (7.1) 

where Tr (generative Transformity)  accounts for  “emerging” forms of higher Ordinality, 

whereas exTr  (dissipative Tansformity) accounts for  losses of Exergy; 

v)  in particular, the Ordinality of Tr  is the one which accounts for the progressive increase in 

Quality, as stated by the Maximum  Em-Power Principle. 

From a more general point of view, however, we can draw some additional conclusions.  

The three processes previously analyzed represent the basic modalities according to which the 

emerging of an excess of Emergy takes place. This constitutes the most important of Odum’s discovery 

in his lifetime work (see Giannantoni, 2003b). This discovery acquired its most significant expression 

in the formulation of the Maximum Em-Power Principle, a revised and updated version of Lokta’s 

Principle. 

The completely new perspective introduced by such a new concept of Quality also suggested the 

development of an appropriate mathematical language, explicitly finalized by translating Odum’s ideas 

into a generally recognized formal language. 

Initially applied to living systems, such a language has shown its validity for non-living systems too 

(see, for instance, Mercury’s Precessions (Giannantoni, 2001d). 

Consequently, the rules of Emergy Algebra can also be considered as being the basis for the 

development of a new mathematics. Such a Mathematics for Generative Processes represents a radical 

passage from a description of processes based on velocity and acceleration (expressed by the 

traditional derivatives of the first and second order), to a new description of the same based on their 



generating capacity and associated generation supra-abundance, adequately represented by the 

incipient derivatives of the first and second order, respectively (Giannantoni, 2003a). 
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