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ABSTRACT 

 
The subtitle recalls a previous article written as a tribute to H.T. Odum’s lifetime work. 

In this article I already pointed out that Odum’s genial creativity, and in particular his famous 

Maximum Em-Power Principle, would “manifest its true relevance mainly in the future, and for 

many years to come. This is because the real and effective introduction of a renewed concept of 

Quality in Science, is able to transform any scientific aspect”, including the same Classical 

Thermodynamics.   

In such a perspective the Maximum Ordinality Principle is nothing but the re-proposition 

of the same Maximum Em-Power Principle, once deprived of any “residual” reference to 

traditional concepts of Classical Thermodynamics (such as Energy, Exergy and so on). Such a 

reformulation might thus appear, at a first glance, as being a sort of “dissonance” with respect to 

the previous formulations of the Maximum Em-Power Principle, both in steady state and dynamic 

conditions. Vice versa, in this way the real novelty of the Maximum Em-Power Principle emerges 

in a much clearer way, by contributing to give a more “harmonious” picture of the surrounding 

world.  

The present reformulation, in fact, enables us to delineate the reference guide-lines for a 

real and complete re-foundation of Classical Thermodynamics, now properly understood as 

“Thermodynamics of Quality”. This is because classical quantities (such as Energy, Exergy and 



so on) simply represent a mere cardinal reflex of Generative Processes persistently evolving 

toward the Maximum Ordinality.  

Such a re-foundation, on the other hand, is already implicit in the same Rules of Emergy 

Algebra, which represent one of the most important contributions to modern Science over the last 

four centuries.  

 

INTRODUCTION 

 

The paper substantially aims at showing that the Maximum Em-Power Principle (Odum 

H. T., 1994a, b, c) introduces a profound novelty with respect to Classical Thermodynamics. 

Its general enunciation, given in one of the equivalent forms, states that “Every System 

reaches its Maximum Organization when maximizing the flow of processed Emergy, including 

that of its surrounding habitat”. Such an enunciation is thus by itself sufficient to show that such a 

Principle represents something “new” with respect to the Principles of Classical Thermodynamics, 

especially because the physical quantity Emergy is defined in terms of a non-conservative Algebra. 

The concept of something “new” (or rather, something “extra”) with respect to Classical 

Thermodynamics is even better pointed out by the definition of Transformity, understood as a 

result of two independent Balances. The Transformity associated to each pathway (i) is in fact 

defined as (Brown & Herendeen, 1996) 
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where the denominator derives from Classical Thermodynamics, whereas the numerator is 

obtained by means of the pertaining Rules of the well-know non-conservative Emergy Algebra. 

The fundamental novelty of the Maximum Em-Power Principle, however, emerges when 

it is formulated under dynamic conditions. In this respect definition (1), which is generally valid 

under steady state conditions, could easily be extended by simply replacing the steady-state values 

with the corresponding instantaneous values 
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Such an approach, however, does not represent the unique possibility. If we consider in 

fact the Rules of Emergy Algebra pertaining to the three fundamental processes (Co-production, 

Inter-action, Feed-back), schematically represented in Fig. 1, we can easily recognize that the non-

conservative algebra adopted substantially asserts that: i) “1 + 1 = 2 + something else” (in a Co-

production); ii) whereas “1 times 1 = 1 + something extra”, where this “extra” strictly depends on 

the nature of the process (Inter-action or Feed-back, respectively). In this sense Transformity may 

(also) be interpreted as a “cipher” of the internal self-organizing “activity” of the System (where 



the term “cipher” is here understood in a gnosiological sense). It would thus indicate that: there are 

processes, in Nature, which cannot be considered as being pure “mechanisms”.  

Such an assertion is equivalent to say that they are not describable in mere functional 

terms, because their outputs show an unexpected “excess” (with respect to their pertinent inputs). 

Such an “excess” can be termed as Quality (with a capital Q) exactly because it is no longer 

understood as a simple “property” or a “characteristic” of a given phenomenon, but as being any 

emerging “property” (from the considered process) never ever reducible to its phenomenological 

premises or to our traditional mental categories (Giannantoni, 2009; see also Anderson, 1972). 

This is also the reason why, according to the convention adopted for the term Quality, from now 

on all the fundamental terms referable to such a concept will analogously be capitalized. 

It is then evident that, when transforming such a non-conservative Algebra (valid in 

steady-state conditions) to dynamic conditions, we end up by introducing a corresponding non-

conservative Differential Calculus. This is precisely because the traditional derivative is not 

properly apt to represent such a concept of  “cipher”.  

 

THE INCIPIENT DERIVATIVE 

 

The introduction of a new concept of “derivative” is thus substantially due to the fact that 

the traditional derivative (d/dt) is nothing but the formal reflex of three fundamental pre-

assumptions when describing physical-biological-social systems: i) efficient causality; ii) 

necessary logic; iii) functional relationships. Such an aprioristic perspective thus excludes, from 

its basic foundation, the possibility that any process output might ever show anything “extra”, with 

respect to its corresponding input, as a consequence of the intrinsic (supposedly) necessary, 

efficient and functional dynamics of the system analyzed. Consequently, such a theoretical 

approach will never see any “output excess”, exactly because it has already excluded from the very 

beginning (but only aprioristically) that there might be “any”. In this sense it is possible to say that 

such an approach describes all the phenomena as they were mere “mechanisms”.  

 Co-production, Inter-action and Feed-back Processes, on the contrary, suggest we think 

of a different form of “causality”, precisely because their outputs always show something in 

“excess” with respect to their inputs. This “causality” may be termed as “generative” causality or 

“spring” causality or whatsoever. In all cases the basic concept is rather clear. Any term adopted is 

simply finalized at indicating that it is worth supposing a form of “causality” which is capable of 

giving rise to something “extra” with respect to what it is usually foreseen (and expected) by the 

traditional approach.  

  The same happens for Logic. In fact, a different Logic is correspondently needed in order 

to contemplate the possibility of coming to conclusions much richer than their corresponding 

premises. This new form of Logic, in turn, could correspondently be termed as “adherent” Logic, 



because its conclusions are always faithfully conform to the premises. Nonetheless, the 

conclusions could even be well-beyond what is strictly foreseen by the same premises when 

interpreted in strictly necessary terms. 

  As an adherent consequence of both previous concepts, the relationships between 

phenomena cannot be reduced to mere “functional” relationships between the corresponding 

cardinal quantities. This is because they always “vehicle” something else, which leads us to term 

those relationships as “Ordinal” relationships. The term “Ordinal” would thus explicitly remind us 

that each part of the System is related to the others exclusively because, above all, it is related to 

the Whole or, even better, it is “ordered” to the Whole.  

Consequently, the new concept of derivative is nothing but the adherent “translation”, in 

formal terms, of the three new gnoseological concepts: Generative Causality, Adherent Logic, 

Ordinal Relationships.  

Such a new derivative was intentionally termed as “incipient” precisely because it 

describes the processes in their generating activity or, preferably, because it focuses on their 

pertinent outputs in their specific act of being born. Its mathematical definition (already presented 

in Giannantoni 2001a, 2002, 2004b, 2008a, 2009) is here recalled only for the sake of clarity  
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Its structure appears as being substantially “similar” to the traditional derivative, even if it 

is deeply different. The adoption of the “tilde” notation would in fact indicate that the same 

symbols are now understood in a substantially different way. To this purpose, before illustrating 

the proper meaning of definition (3), it is worth noting that the traditional increment 

  )()( tfttftf   can equivalently be expressed in terms of the “operator”  , which 

represents the variation   )( ttftf   of the analyzed property  tf  : 

    )()1()()( tftfttftf 


             (4). 

Thus the ratio 

t
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 (in definition (3)) substantially replaces the traditional incremental ratio 

t
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. 

The symbol “tilde”, however, should remind us that its meaning is now completely different. 

The comparison between the “incipient” derivative and the traditional derivative can 

better be illustrated by firstly pointing out that the latter corresponds to an “operative” definition, 

because the priority of the operators that constitute its definition is understood from right to left, 

that is: i) firstly the concept of function (which is assumed to be a primary concept); ii) then the 



incremental ratio (of the supposedly known function); iii) thirdly the operation of limit (referred to 

the result of the previous two steps). 

The “incipient” derivative, on the contrary, is based on the direct priority of the order of 

the three elements that constitute its definition (from left to right). This is why they acquire a 

completely different meaning. Let us start from the symbol 


Lim . The etymological origin of the 

word can help us: “Limit” comes from the Latin word “Limen”, which means a “threshold”. It 

could be a “threshold” of a door or of a “window”, from which we observe and describe the 

considered phenomenon. In such a case the symbol  




 00:t  indicates not only the initial 

time of our registration, but also the proper “origin” (in its etymological sense) of something new 

which we observe (and are going to describe) in its proper act of being born. It becomes then 

evident that the “operator” 


  now registers the variation of the observed property  tf , not only 

in terms of quantity, but also, and especially, in terms of Quality (as the symbol “tilde” would 

expressly remind). Thus the ratio (4) indicates not only a quantitative variation in time, but both 

the variation in Quality and quantity. In fact, from the very beginning of any process we can  

recognize its specific genesis in the form of a Co-production, Inter-action, Feed-back, respectively. 

We can then take explicit note of this genetic property by means of a rational number as an 

exponent of the Ordinal Incremental Ratio: 1/2, 2, and {2/2} respectively. Consequently, when we 

take the incipient (or “prior”) derivative of any  tf , this will keep “memory” of its genetic origin 

because, besides its quantity, it will result as being structured according the indication of such an 

exponent. This is correspondently termed as Ordinality, because it precisely expresses (as already 

anticipated) how each part of the output is related to all the others or, better, how it is genetically 

Ordered to the Whole. In this way the corresponding output “functions” (“binary”, “duet”, and 

“binary-duet” functions, respectively) result as being structured in such a way as to show that  

“excess” of Information which cannot be accounted for by means of traditional derivatives, 

because it is never reducible to its sole phenomenological premises or to our traditional mental 

categories (Giannantoni 2004a, 2008a, 2009). In other terms, the “incipient” derivative represents 

the Generativity of the considered Process, that is the output “excess” (per unit time) characterized 

by both its Ordinality and its related cardinality. This is also the reason why the sequence of the 

symbols (in Eq. (3)) is interpreted as a generative inter-action (see the symbol “  ”) between the 

three considered concepts. In this way the “incipient” derivative is also able to unify (and, at the 

same time, to specify) the three basic Processes, now explicitly understood in terms of Quality.  

The Generativity concept, in fact, is that which unifies the three Processes, whereas the 

pertinent Ordinality expresses the structure of the corresponding output “functions” (as “binary”, 

“duet”, and “binary-duet” functions, respectively), which are understood as a Whole (ib.).  



The adoption of “incipient” derivatives, however, is not exclusively restricted to the three 

afore-mentioned Processes, because definition (3) is valid for any fractional number q . This 

suggests we may also adopt such a definition to model any complex System, by simply 

considering “incipient” derivatives characterized by those rational numbers )/( nm which result 

as being more appropriate to each specific System analyzed.  

 

THE MAXIMUM ORDINALITY PRINCIPLE 

 

The above-mentioned possibility offered by definition (3) enables us to reformulate the 

Maximum Em-Power Principle in a more general form, that is in terms of Ordinality.  

The corresponding verbal enunciation then becomes: “Every System tends to Maximize 

its own Ordinality, including that of the surrounding habitat”. In formal terms, this can 

correspondently be expressed as 
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where )/( nm  is the Ordinality of the System and }{


sr  is the proper Space of the System (where  



sr may be considered as being a generalized version of Hamiltonian coordinates). 

Such a more general formulation was thus assumed as the preferential guide to recognize 

the most profound physical nature of some fundamental processes, all of them analyzed as self-

organizing Systems. The successful application of such a Principle to some decisively “critical 

points” of various Disciplines (Giannantoni 2008a), enables us to assert that, on the basis of the 

Maximum Ordinality Principle: i) mathematical problems traditionally considered as being 

“insolvable” (e.g., the famous “Three-body Problem” (Poincaré, 1889)), become “solvable”; ii) 

problems widely recognized as being “intractable” (e.g. Protein Folding), became “tractable” in a 

reasonable computation time; iii) and problems usually thought as being “soluble” with a desired 

“precision” (referred to the model), continue to be soluble. However, they are always characterized 

by a “drift” between the foreseen behavior of the system and the corresponding experimental 

results. A “drift” which is generally much more marked as the order of the system increases.  

We want now to show that all these aspects are intrinsically due to the same adoption of 

the traditional derivative.  

To this purpose, we will start from considering the “drift” pertaining two well-distinct 

examples: Mercury’s Precessions, which is a problem that admits an analytical solution, and the 

case of Global Warming, whose future projections are obtained by means of numerical solutions. 

In both cases we will point out the basic difference between the concept of  “precision” (pertaining 

to the model) and the concept of  “drift” (which is referred to the phenomenon analyzed).  



These two examples will also be able to show that the same adoption of the traditional 

derivative represents, at the same time, the basic reason for the insolubility (in explicit or even in a 

closed form) of the above-mentioned differential problems, as well as for the “intractability” of 

several other problems. 

 

Mercury’s Precessions 

 

This example, already dealt with in (Giannantoni 2004b, Giannantoni & Zoli, 2009), is 

here synthetically recalled because it is particularly meaningful: it represents the case of a perfectly 

soluble Problem which, nonetheless, shows a derivative “drift” with respect to the physical 

phenomenon analyzed. 

The initial idea of reconsidering such a problem in a different perspective originated from 

the subsisting difference between the derivatives of the exponential function 
)(te obtained on the 

basis of the two distinct concepts of derivative (see Table 1). In this respect it is worth noting that 

the assumption of the exponential function as a reference function does not represent a limitation, 

because any function )(tf  can always be structured in the form 

          
)()(ln)( ttf eetf               (7). 

Such a choice, in addition, simplifies the exposition of the basic concepts we are going to present. 

  As Table 1 clearly shows, the traditional derivatives present “additional” terms (from the 

second order on) with respect to the incipient derivatives. Such a specific “difference” suggested 

the possibility of re-interpreting, by means of IDC, the “failure” of Classical Mechanics in 

foreseeing Mercury’s Precessions, without modifying, in any form, the space-time concepts, as 

vice versa happens in General Relativity (Giannantoni 2004b, Giannantoni & Zoli, 2009).  

       The “Two-body problem”, in fact, as traditionally modeled in Classical Mechanics, is 

strictly equivalent to solving a second order homogeneous differential equation with variable 

coefficients (Landau & Lifchitz, 1969, p. 46). At the same time it is also well known that Classical 

Mechanics underestimates the value of Mercury’s Precessions, by foreseeing an angular anomaly 

of “zero”, with respect to 42.60.9 sec/cy, obtained by astronomical measurements (see Note 2). It 

was precisely this “discrepancy” which led us to think that such an effect could be directly related 

to the “drift” of the second order traditional derivative with respect to the corresponding second 

order “incipient” derivative. 

  Let us then consider two distinct homogeneous second order LDEs, with variable 

coefficients, written in the traditional derivative ( dtd / ) and in the incipient derivative ( tdd


/ ) 
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with the same well-posed initial conditions (according to Cauchy) 
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       If we now research for their pertinent solutions, )(tf  and )(tf


, respectively, both 

supposed to be structured in the form (7), we obtain (see also Tab. 1) the following two 

correspondingly associated characteristic equations:  

0)()()()}()]({[ 2  tBttAtt   (10);     0)()()()]([ 2  tBttAt


  (10.1). 

       Equation (10), as a consequence of the presence of the term )(t , is a second order non-

linear differential equation, which is intrinsically unsolvable in finite terms and quadratures. 

Equation (10.1), on the contrary, is an algebraic equation in the incipient derivative )(t


 , with a 

consequential explicit solution.  

       Equation (10), however, can always be re-written as follows   

                )()()()()]([ 2 ttBttAt                 (11). 

Now, by taking into account that )(t  and )(t


  coincide from a pure cardinal point of view 

(although they are radically different from a Generative point of view (Giannantoni 2008a, 2009)), 

it is easy to recognize that the difference between the two second-order differential equations (10) 

and (10.1) is substantially due to the fact that the former is “similar” to the latter, apart from an 

additional forcing term, which leads to a particular integral, whose contribution is negative when 

0)( t  and positive when 0)( t . This is (roughly) equivalent to say that: i) when the 

concavity of )(tf  is upward, the function tends to underestimate the incipient solution )(tf


; ii) 

vice versa, when the concavity is downward, the function tends to overestimate the solution )(tf


. 

       This explains why Classical Mechanics, based on traditional derivatives, underestimates 

the astronomical effect of Mercury’s Precessions and, at the same time, why “Incipient” 

Mechanics leads to an estimation of the angular anomaly precession of 42.45 sec/cy, which 

represents a satisfactory agreement with the most recent available data (Giannantoni, 2004b).(2)  

       Such a result can easily be extended to homogeneous linear equations of any order n, as 

well as to non-homogeneous linear differential equation (of any order n), because in this case we 

simply have additional forcing terms. This theoretical approach can also be extended to both 



homogeneous and non-homogeneous non-linear differential equations, of any order n.(3) An 

extension  which becomes of particular interest especially when the analysis starts from a well-

known differential mathematical model.  

It is also of interest, however, to consider the consequences of such a theoretical approach 

when the analysis starts from the sole output of a mathematical model, as it happens in the next 

example, concerning future trends of Global Warming and Climate Change. 

       Let us then consider Taylor’s expansion series of function (7), understood as a generic 

output of any given mathematical model (see Giannantoni 2008a, Giannantoni  & Zoli, 2009) 
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       We can then assert that the corresponding “incipient” expansion series  
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gives a better estimation of the real trend of the physical phenomenon analyzed. This can simply 

be shown by considering the differences between the terms of the same order, in the expansion 

series (12) and (13), as shown by Eqs. (14) and (15) in Tab. 2, respectively. (4) 

       The comparison between Eq. (14) and Eq. (15) clearly shows the “drift” effect associated 

to the traditional derivatives (from the second order on), with respect to the more formally 

harmonious “incipient” derivatives. It is precisely such a derivative “drift” that which is 

responsible for the intrinsic insolubility, in explicit terms and quadratures, of any linear 

differential equation with variable coefficients (and, a fortiori, of any non-linear differential 

equation) of order 2n , when they are written in terms of dtd / .(5) We consequently have two 

sole well-distinct cases, graphically illustrated in Figure 2. 

In fact the difference between each term of Taylor’s traditional expansion series and the 

corresponding term in Taylor’s incipient series is given by 
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      This equation shows that each derivative pertaining to expansion series (12) presents its own 

“drift” effect, with respect to the corresponding term of expansion series (13). Consequently, the 

two above-mentioned different cases correspond to the fact that the sum of all the derivative 

“drifts” is: i) either greater than zero; iii) or lower than zero, respectively.(6) We can thus assert 

that: in the first case, TDC underestimates an effect that could be much higher than the most 

accurate mathematical models (Fig. 2, a); in the second case, on the contrary, TDC overestimates 

an effect which, in reality, is lower than the best simulations and, thus, could even result as being 

negligible (Fig. 2, b).  



       On the basis of such considerations, we can now analyze the second example, represented 

by those outputs of mathematical models adopted by IPCC to estimate Global Warming and 

Climate Change. 

 

Global Temperature Increase Over The Period 2000-2100 

      

 In this case our expectations are that the derivative “drift” is much more marked than in 

Mercury’s Precessions, because Global Warming is not described by a simple second order 

differential equation, but it is usually modeled on a system of linear and non-linear differential 

equations, the order of which generally ranges from 50 to 100. In addition, the time interval 

considered (one century) is rather long. 
   

        According to IPCC, “The best estimates for projected global warming from 1990 to the end of 

this century range from 1.8 to 4.0 °C (likely range 1.1 to 6.4 °C) for different scenarios (relative to 

1980-1999)” (CSI 012, 2008, p. 1). The maximum scenario refers to the case in which no more 

action is taken to limit emissions (see Figure 3). 

       On the basis of Eq. (16) it is then possible to show (Giannantoni & Zoli, 2009) that both 

trends, which gives net increases of 6.4 °C and 1.1 °C, respectively, over the period 2000-2100 (as 

foreseen by IPCC), underestimate the future increasing in Temperature. In fact, Taylor’s Incipient 

Expansion Series correspondingly give: i) in the fist case, an increase of 16.4 °C (that is 150 % 

higher than 6.4 °C); in the second case, an increase of 3.01°C (that is 73 % higher than the 

foreseen value of 1.1°C). 

       Similar trends are also expected for future sea level rise (as already shown in 

(Giannantoni & Zoli, 2009)), exactly because the latter is strictly dependent on the increase in 

temperature.  

In all cases, a validity confirmation of the adoption of “incipient” derivatives can be 

obtained by considering a well-known effect happened “in the past”: the “unexplained” sea level 

rise over the period 1900-2000.  

 

The “Unexplained” Sea Level Rise Over The Period 1900-2000 

 

The sea level has been rising at a rate of around 1.8 mm per year (i.e. 18 cm/cy; see Figure 

4). This rate is still increasing. Measurements from the period 1993-2003 indicated a mean rate of 

3.1 mm/year. (IPCC, 2007). 

The real trend of such an increase has been registered by means of 23 long tide gauge 

records, in geologically stable environments, provided by the Permanent Service for Sea Level. 

Theoretical estimations, on the contrary, lead to foresee a trend of 6.0 cm/cy.(7) 

http://en.wikipedia.org/wiki/Tide_gauge


Such a discrepancy represents a sort of  “enigma”. In fact: “Two processes are involved: an 

increase of the mass of water in the oceans (the eustatic component), derived largely from the melting 

of ice on land, and an increase of the volume of the ocean without change in mass (the steric 

component), largely caused by the thermal expansion of ocean water.” (Mayer & Wahr, 2002, p. 1).   

      The eustatic contribution of 6 cm attributed to IPCC leads to a residual rise to be explained 

of 12 cm to the end of the century, which cannot be accounted for by steric expansion only. (ib.). On 

the other hand, other potential effects do not seem to be able to explain such a difference, because they 

only give marginal contributions. They consequently result as being insufficient to account for the 

observed drift of 12 cm. (8)    

      The interpretation of such a difference in terms of IDC has been given in (Giannantoni & 

Zoli, 2009). In such a case Eq. (13) leads to a net increase of not less than 17.0 cm/cy (ib.). 

      This result shows that the (so-called) “un-explained” recent sea level rise is due more to an 

intrinsic limitation of the mathematical models adopted to describe physical systems (in terms of TDC) 

than to new (or not yet identified) causes. At the same time, such an example represents a significant 

validation of the method based on IDC, since the result obtained does not refer to (foreseen) future 

trends, but concerns past effects, already registered ad accurately measured.    

 

CLASSICAL THERMODYNAMICS AS THE MOST GENERAL MATHEMA-

TICAL MODEL OF ANY COMPLEX SYSTEM 

 

Let us now consider the three well-known Principles of Classical Thermodynamics and their 

mathematical formulations. It is possible to assert that such a system of equations constitutes the most 

general Mathematical Model of any Complex System, because it can also be extended to the entire 

Universe (supposed as a closed System). However, as a consequence of the generalization of the 

concept of “drift” to any Complex System when modeled in TDC (see previous section devoted to 

Mercury’s Precessions), the same Thermodynamic Principles will always present a “drift” (according 

to Eq. (16)) between their theoretical projections and corresponding phenomena analyzed. We can thus 

assert that: i) Energy is not properly constant; ii) Entropy cannot be considered as being a state 

variable; iii) Its limit does not generally tend to zero when the absolute Temperature tends to zero.  

Consequently, the Three Principles should be reformulated as follows, by passing 
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Such an assertion can be sustained on the basis of two different logical procedures. The first one 

is “internal” to the same traditional approach, because based on well-known and achieved results. The 

second one is strictly related to the mathematical language adopted to formulate Eqs. (17), (18), (19), 

when compared with the new language developed to formulate the Maximum Ordinality Principle.  

For the sake of completeness and clarity the latter case will be dealt with in a specific Appendix. 

With respect to the former case, a sufficiently clear indication that Energy could no longer be 

considered as being properly constant is related to two well-known aspects: Mercury’s Precessions and 

non-integrable Systems. Two results which are widely recognized as being fundamental in Physics (the 

former is confirmed by experimental results, while the latter is based on the theoretical impossibility of 

a solution to the “Three-body Problem” and, a fortiori, to the “N-body Problem”).  

 

First Example: The Two-body Problem (Mercury’s Precessions) 

 

We have already seen that, on the basis of Classical Mechanics, if total Energy is assumed as 

being constant 

                                        consttEntEnEn potkintot  )()(                (20), 

the explicit solution gives 0sec   , instead of a variation of angular anomaly of about 42 sec/cy. 

If, vice versa, we assume that (Landau, Mécanique, p. 57) 
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                          (20.1), 

we get an explicit solution which is conform to experimental results, but the previous value of total 

Energy (given by Eq. (20)) can no longer be considered as being constant. In fact 
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The additional contribution to potential Energy ( )/ 2r was initially thought of as being 

referable to an another planet (termed as Vulcan), supposedly situated between the Sun and Mercury. 

However, such an additional Planet, although thoroughly researched, has never been found and, at the 

same time, perturbations due to all the other planets are not sufficient to explain the considered effect. 

 

Second Example: The “Three-Body” Problem and Non-Integrable Systems 

 

 As an immediate consequence of the insolubility of the “Three-body” Problem (when 

extended to the “N-body Problem”) is represented by the so-called non-integrable Systems. In such a 

case: i) Energy cannot be defined as a state variable, because the final state of any non-integrable 

System is always un-known; ii) Non-integrable Systems, at the same time, have progressively shown 

that the condition “En = const” has to be removed in favor of weaker and weaker conditions, such as: 

ergodyc Systems, weekly stable Systems, chaotic Systems; iii) “The conservation of Energy is a 

limitation imposed to freedom of complex systems” (Poincaré, 1952, p. 133); iv) “Its conservation 

excludes the emergent novelty that grows out of complex interactions” (Mirowski, 2000, p. 7). 

These two example are already sufficient to assert that an extremely important Principle, such as 

the Maximum Em-Power Principle, should not be “anchored” to Classical Thermodynamics (neither in 

terms of Energy or Exergy), because, according to Popper, the “falsification” of one sole 

presupposition of C.T. (e.g. Energy conservation) is sufficient to “falsify” the entire Theory. This is 

precisely because the consequences of that sole falsification reflect on the entire Theory. 

This also means that Principles of Thermodynamics can still be adopted in the form (17), (18), 

(19) (where the symbol “=” is now clearly understood as “ ”) only for those Systems characterized 

by low differential orders, and for time intervals comparable with the dominating time constants of the 

System. In all the other cases, in fact, any mathematical model based on C.T. (and, in particular, on 

Energy “conservation”), will show an “intrinsic drift” effect, which generally becomes much more 

marked as the differential order of the system increases and/or the time of analysis is largely higher 

than the proper time constants of the system analyzed (such as in the case of Mercury’ Precessions).  

As an example, the application of the Energy conservation Principle to the entire Universe 

would lead to reinterpret (in this new perspective) the so-called “Dark Energy” as a “drift” (in TDC) of 

about 1,400 %. This is because the Maximum Ordinality Principle shows that the traditional concept of 

“Energy” is nothing but a cardinal reduction of chrono-topological characteristics of the “proper” 

Space of the System. In this case, however, any Inter-Relation Process between two (or more) Systems 

(i and j), modeled in Ordinal terms, does not lead to the superimposition of the corresponding “proper” 

Spaces. In fact, according to the Maximum Ordinality Principle, we always have 



               }{}{}{


 iis rrr               (21)(9). 

Such an aspect becomes particularly evident in the previous examples concerning Global Warming and 

Climate Change, where the considered systems are usually analyzed on the basis of a mere super-

imposition of effects of Energy quantitative terms.  

 

CONCLUSIONS 

 

The reformulation of the Maximum Em-Power Principle as the Maximum Ordinality Principle 

is thus primarily finalized to bring out that the “essence” (and the “novelty”) of the former is totally 

independent from Classical Thermodynamics. In this sense the Maximum Ordinality Principle can be 

considered as being “a harmonious dissonance”, precisely because the adjective “harmonious” refers to 

its faithful conformity to the “essence” of Maximum Em-Power Principle, whereas the term 

“dissonance” refers to Classical Thermodynamics.  

The Maximum Ordinality Principle, in fact, formally expressed by Eq. (6), exactly represents 

the reformulation of Maximum Em-Power Principle once “deprived” of any reference to Classical 

Thermodynamics, by always remaining, at the same, extremely faithful to the essence of Emergy 

concept (or rather Transformity), when the latter is understood as a non-conservative Phy-sical Entity. 

 

“Com-possibility” of Approaches 

 

      Before concluding the paper, it is worth recalling a fundamental aspect, already pointed out in 

(Giannantoni 2008a): the “Com-possibility” of the two Approaches (synthesized in Table 3). 

The Approaches here considered, based on TDC and IDC, respectively, do not exclude each 

other. This is because the former is not able to exclude (in principle) the “incipient” approach, because 

it is based on the hypothetical-deductive method (whose structure is recalled in Tab. 3) which, in turn, 

is substantially based logical “necessity”. Therefore, as a consequence of the absence of any form of 

perfect induction in “necessary” logic (which would transform, only in this case, the first approach in 

an absolute perspective), it is impossible to assert the uniqueness of the inverse process. That is: it is 

impossible to show that the hypotheses adopted are the sole hypotheses which are capable to explain 

the considered experimental results. In other terms, in necessary logic there always exists, in principle, 

an infinity of other possible hypotheses capable to lead to the same conclusions. 

At the same time, the new Approach here proposed does not “exclude”, in any case, the 

previous one. Firstly, because it is not interested in showing that the traditional approach is “false” (in 



the Popper sense), because it recognizes that the traditional approach already has its own specific 

falsification criteria. On the contrary, it is much more interested in showing that physical Processes 

cannot faithfully be described as mere “mechanisms”, because of the ever-present Quality in all 

Processes, even if Quality manifests itself in different forms and modalities (Giannantoni, 2002). 

Secondly, because the traditional approach maintains its validity for physical processes described by 

low order differential systems and/or time intervals comparable with the dominating time constants of 

the process analyzed. Thirdly, and in particular, because the “incipient” approach proposes an Ordinal 

Perspective which may lead us to a solution exactly where the former fails. Such as, for instance, in the 

case of the famous “Three-body Problem”. 

In essence, the “incipient” approach would only like to show that: “We can do better”. 

Obviously, by always sustaining such an assertion on the basis of experimental results.  
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APPENDIX. THE INTRINSIC DRIFT OF CLASSICAL THERMODYNAMICS 

 

This appendix is devoted to show the general validity of Eqs. (17.1), (18.1), (19.1) with respect 

to the more limited validity (or absence of a general validity) of Eqs. (17), (18), (19) which, 

nonetheless, are considered as being the mathematical formulation of the three “Principles” of 

Classical Thermodynamics. Such an absence of general validity will be shown on the basis of the same 

http://www.pnas.org/search?author1=Mark+F.+Meier&sortspec=date&submit=Submit


mathematical language adopted (TDC), because this is the direct translation of the three basic 

gnoseological presuppositions of the traditional approach. This leads us to the conclusion that the 

afore-mentioned Thermodynamic Principles cannot be considered as being generally valid, because, 

for their genetic origin, they aprioristically “filter” any form of Generativity which, vice versa, 

according to the Maximum Ordinality Principle, is ever-present in “Phy-sical” Phenomena. 

 

FIRST PRINCIPLE: EQUATION (17) BECOMES EQUATION (17.1) 

 

The general validity of Eq. (17.1) could evidently be shown by considering the derivative “drift” 

of the Energy function when (in analogy to the previous examples) it is supposed to be known and also 

structured in its most general form  

       ]),(),(),([ ttztytxEnEn                              (22). 

However, its worth adopting, in this case, an even more general perspective (already anticipated in 

Giannantoni 2002, 2004b), because referable to any “conservation” Principle. In fact, on the basis of  

the Traditional Differential Calculus we have  

consttF )(  (23)     0)( tF
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d
               (23.1), 

 

whereas, on the basis of the Incipient Differential Calculus we only have  
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             (24.1). 

That is, condition (24.1) is not sufficient to assert the general validity of condition (24). 

This does not mean that, if (24.1) holds, we always have consttF )(  (24). In some cases we can 

still have consttF )( . However, this is not true in general (as happens, vice versa, to condition 

(23), with respect to (23.1)). This result becomes particularly evident when the function )(tF  is a 

“function of function(s)”. 

Let us then consider, for example, the function  
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whose structure is derived from a very general definition of Energy. This in fact, on the basis of  C.T., 

can always be defined as 
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where )(/1)( ttf   is the inverse of the generalized Carnot coefficient (always different from zero), 

while                               dzyxExtg
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]),(),(),([)(                              (27) 

expresses total Exergy, evaluated with reference to a given arbitrary initial time 0t . 

Under such an assumption, condition (23.1) becomes 
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which can be re-ordered as follows 
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where )(tf , for the sake of simplicity, can be considered as being a known function, Eq. (29) can be 

re-written as  
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Its general solution in terms of incipient derivatives is then given by 
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while its first derivative is equal to 
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Eq. (30), on the other hand, can easily be solved in explicit terms (as a first linear differential equation) 

to give                        
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Equations (33) and (34) enable us to show that, under the general hypothesis of a function )(tF  

structured in the form (25), condition (24.1) “generates” a function (or rather, a Relationship) which is 

not constant.  

 

SECOND PRINCIPLE: EQUATION (18) BECOMES EQUATION (18.1) 

 

The validity of Eq. (18.1), in lieu of Eq. (18), can be shown on the basis of Taylor’s Incipient 

Series (12), after having recalled the mathematical definition of the contour integral which appears on 

the second hand of Eq. (18.1) . 

Such an integral, in fact, is defined on the basis of the concept of a traditional function of two 

(or more) variables. Its value can be obtained on the basis of the associated linear integral  
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                              (35), 

where the linear differential form YdyXdx   is supposed to be defined in a connected field and the 

regular curve ),( 21 PP  is defined by means of two parametric equations 

                                                      )(txx       ,     )(tyy                  for ],[ bat                    (36). 

It is also well-known that condition  0 YdyXdx   (37)  is sufficient to assert that linear 

integral (35) is independent from the pathway ),( 21 PP . It is then possible to write 
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or, equivalently               )](),([)](),([ 2122 tytxFtytxFS                 (39). 

Accordingly, for any closed curve ),( 11 PP , that is when 12 PP   and, correspondently,   

  )()( 21 txtx      , )()( 21 tyty                 (40),  

we have  that            0)](),([)](),([ 1122  tytxFtytxFS               (41). 

As a consequence of the fact that the linear integral in Eq. (35) is independent from the 

considered pathway, the function )](),([ 22 tytxF  can also be considered as a function of the sole 

parameter t . We can then define a new function )](),([)( tytxFtG   (42). In this way the value of 

)](),([)( 222 tytxFtG   can be obtained by means of Taylor’s series (12), by starting from any 

given initial point 1tt  . We consequently have  
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which equals zero when 12 PP  . 

If we now consider the corresponding Taylor’s Incipient expansion series (see Eq. (13)) 
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and immediately after the difference 
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(in which evidently )()( 11 tGtG


 ), we can easily recognize that, when 12 PP  , the second hand of 

Eq. (44) is different from zero, even if, as a consequence of the Second Principle, we have that 

0S . This is because Eq. (44) is an expansion series in which each term, for ),1[ k , is given 

by the following expression (see also Eq. (16)) 











!
)]()()()[(

k

t
tG

td

d
tG

dt

d k
kk

!
)]}(),...(),([{ )()(

k

t
ttte

k
k

k

t 
            (45), 

to which we can apply the same considerations as in the case of Mercury’s Precessions.  

 

THIRD PRINCIPLE: EQUATION (19) BECOMES EQUATION (19.1) 

 

The general validity of Eq. (19.1) (with respect to Eq. (19)) could be shown by starting from the 

same Taylor’s Series considered in the previous section (see Eqs. (44) and (45)), now reconsidered in a 

different perspective, that is according to the enunciation of the Third Principle. In this case, however, 

we can directly start from expansion series (42) and (43), in order to show that: even if Eq. (19) holds 

in a context in which S  is considered the result of a “necessary” process, the same equation is not 

generally valid when the analyzed process is considered as being a Generative Process.  

Eq. (43), in fact, when evaluated for 12 PP  , gives  
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which is generally different from zero, because: i) If 0)( 0 t


  the conclusion is evident; ii) when 

0)( 0 t


  it can also happen that, as a consequence of the alternating signs of the various terms, the 

series could be equal to zero for a finite number of intervals it  (i =1, 2, 3……n). This, however, can 

never be valid in general, because this would be true only for 0t . 

These two cases are, by themselves, already sufficient to show that Eq. (19) is not valid in 

general and, consequently, it cannot properly be considered as being a Thermodynamic Principle. 

For the sake of completeness it is worth adding that Eq. (46) is generally different from zero 

even when 0)( 1 t


 . This is because the estimated global error nltErr  (obtained by summing 

terms given by Eq. (16)) has always to be considered as “not less than” (this is the reason for the pedix 

“nlt”). In fact, as already anticipated, the analysis here presented has been carried out by simply 

comparing TDC and IDC when the latter is (preliminary) understood in sole cardinal terms. In such a 

case all proper Space variables (x, y, z) are still considered as being in-dependent from each other. An 

assumption which is no longer valid when describing any System in Ordinal terms, because those 

variables are always related to each other in term of multiple “binary” functions or multiple “duet” 

functions (or both). This is why the global error nltErr  (estimated by summing terms given by Eq. 

(16)) is always lower (in absolute terms) than the error that would be obtained by means of IDC when 

the latter is properly understood in Ordinal terms. This can easily be shown by considering the explicit 

expression of S  as function of function (and not as a function of the sole parameter t ), either in 

terms of two arbitrary state variables, such as )(txx   and )(tyy  , so as to have 

)](),([)](),([)()( 112212 tytxFtytxFtGtGS                (47), 

or better, by assuming that the same temperature is one of the two variables (e.g., )()( tTtx  ).  

In the latter case the mathematical procedure is even shorter. Nonetheless both such 

procedures are here omitted, not only because they require much more space than the previous ones, 

but also, and especially, because they are, strictly speaking, absolutely inessential. Conditions i) and 

ii), in fact, are by themselves already sufficient to show the absence of a general validity of Eq. (19).   

 

Notes: 

(1) As is well known, the traditional derivative of order n can be expressed by means of Faà di Bruno’s 

formula (see Table 1), where the sum extends to all the partitions ),...,,( 21 nPPP  of the integer  m  such 

as: mPPP n  ...21
 and nnPPPP n  ...32 321

  (Oldham & Spanier, 1974, p. 37). At the 

same time, for an easier and faster comparison with the integer order traditional derivatives, the 



Ordinality of the incipient derivatives was directly “reduced” to a simple cardinality. This evidently 

represents a preliminary approximation, which will be released toward the end of the paper. At this 

stage, however, it contributes to simplify the exposition of the basic concepts. 

(2) Astronomical measurements give an angular anomaly precession of 42.60.9 sec/cy (Landau & 

Lifchitz, 1966, p. 373). General Relativity (GR), on the other hand, which predicts a value of 43.0 

sec/cy (ib.), cannot be considered as a definitive answer to this problem, because: it does not solve the  

(subsequent) “Three-body Problem”. In addition, when the latter is faced in numerical terms (in the 

context of GR), the solutions proposed by Sundman (1912) and Wang (1990s) become even more 

“intractable”. In all cases GR also adopts the same presuppositions and the same formal language 

(TDC), although specialized to the research for invariants. What’s more, the precision attained in the 

case of Mercury’s Precession is strictly depending on both the second order differential system and the 

corrective Lorentz transformations, which, on the other hand, substantially correspond to the 

introduction of an “equivalent” second order “incipient” derivative (see Giannantoni, 2008a). 

(3) Such an extension is substantially based on the fact that any non-linear differential equation, 

written in terms of incipient derivatives, can always be transformed into a linear differential equation 

(Giannantoni 2007a, ch. 3). 

(4) The same considerations can obviously be extended to the case in which we start from a 

polynomial best fit of the output.  

(5) This is also the basic reason for the intrinsic insolubility of the famous Three-body Problem 

(Poincaré, 1889) which, on the contrary, has at least a solution in a closed form in terms of  “incipient” 

derivatives (Giannantoni 2007a, ch. 5; 2008a,b). 

(6) The third (theoretical) condition, corresponding to the sum of all the “drifts” identically equal to 

zero, can never be verified over the entire interval of analysis. At most, it is verified in a finite number 

of well-distinct points. 

 (7) The estimated component causes of sea-level change during the 20th century were summarized in 

IPCC’s Fourth Assessment Report (IPCC, 2007).  

(8) Some Author, after having confirmed that tide gauge data are correct, concludes that “there must be 

a continental source of 1.4 mm/yr of fresh water.” (Wikipedia, 2008, p. 8). 

(9) An interesting example is given by the well-known composition of velocities in General Relativity. 

Such a composition in fact represents a preliminary approximation of the condition }{}{}{


iis rrr   

(21.1), because its validity is restricted to the sole case of low differential order Systems (such as in the 

case of interaction between two particles). 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 - Tranformity as a “cipher” of the internal self-organizing activity of the System 

(non-conservativeness is assumed as being a fundamental aspect) 
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Figures 2a), b) - Over/under-estimation between Taylor’s Traditional and Taylor’s Incipient Series 
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     Figure 3 - Temperature Future Trends over this century according to some Research Centers - 

                            IPCC’s projections are a sort of their envelope (Wikipedia, 2008a, p. 1) 

 

 

 

 
 

          Figure  4 - Sea level rise over the period 1900-2000 (Wikipedia, 2008, p. 1) 



Table 1 - Comparison between traditional and incipient derivates for the exponential function 
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         Table 2 - Basic differences between incipient derivative and traditional derivative of order  n 

 

Traditional  Differential Calculus 

(Faà di Bruno’s formula) 
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Incipient  Differential Calculus 
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       Table 3 - Synoptic Comparison between the Basic Presuppositions pertaining to TDC and IDC 

Traditional  Differential Calculus 

 

1) efficient causality 

 

2) necessary logic 

 

3) functional relationships 

Incipient  Differential Calculus 

 

1’) Generative Causality 

 

2’) Adherent Logic 

 

3’) Ordinal Relations 

 

 

 

   is the corresponding formal translation 

                         

    represents a  functional relationship 

 

      is the corresponding formal translation 

 

      represents an Ordinal Relationship 

 

 

 

Traditional approach cannot exclude the other, 

because of the absence of any form of perfect 

induction in the hypothetical-deductive method:   
  

Structure of hypothetical-deductive method  

                             

Hypotheses 

↓ 

Mathematical Formalization 

↓ 

Conclusions 

↓ 

Confirmation by experimental results 

The new Approach does not “exclude”  

the former, in any case: 

 

In fact it may only indicate (with reference to 

the other) that the validity of the traditional 

approach is limited to physical processes 

described by differential equations 

(or systems of differential equations) of very 

low order and/or time intervals comparable 

with time constants of the process analyzed 
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